Particle sensing with confined optical field enhanced fluorescence emission (Cofefe).

Publication Type:

Journal Article


Optics express, Volume 26, Issue 10, p.12959-12969 (2018)


We describe the development and performance of a new type of optical sensor suitable for registering the binding/dissociation of nanoscopic particles near a gold sensing surface. The method shares similarities with surface plasmon resonance microscopy but uses a completely different optical signature for reading out binding events. This new optical read-out mechanism, which we call confined optical field enhanced fluorescence emission (Cofefe), uses pulsed surface plasmon polariton fields at the gold/liquid interface that give rise to confined optical fields upon binding of the target particle to the gold surface. The confined near-fields are sufficient to induce two-photon absorption in the gold sensor surface near the binding site. Subsequent radiative recombination of the electron-hole pairs in the gold produces fluorescence emission, which can be captured by a camera in the far-field. Bound nanoparticles show up as bright confined spots against a dark background on the camera. We show that the Cofefe sensor is capable of detecting gold and silicon nanoparticles, as well as polymer nanospheres and sub-μm lipid droplets in a label-free manner with average illumination powers of less than 10 μW/μm.